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Abstract. We study the transverse momentum (pT ) spectrum of charged particles produced in deep in-
elastic scattering (DIS) at small Bjorken x in the central region between the current jet and the proton
remnants. We calculate the spectrum at large pT with the BFKL ln(1/x) resummation included and then
repeat the calculation with it omitted. We find that data favour the former. We normalize our BFKL pre-
dictions by comparing with HERA data for DIS containing a forward jet. The shape of the x distribution
of DIS + jet data is also well described by BFKL dynamics.

1 Introduction

An intriguing feature of the measurements at HERA in
the small x domain is the possible existence of significant
ln(1/x) effects. A major part of the rise observed for the
structure function F2 with decreasing x may be attributed
to the resummation of the leading ln(1/x) ‘BFKL’ [1] con-
tributions. An excellent unified BFKL/GLAP fit of F2 in
the HERA regime has recently been obtained using a “flat
in x” input [2], and the rise due to BFKL-type effects
has been quantified within this description. However, the
growth of F2 with decreasing x can be described equally
well by pure GLAP [3] ln(Q2) evolution from suitably cho-
sen input parton distributions so the main origin of the
rise is still an open question. The observable F2 is too
inclusive to distinguish between these alternatives. The
study of deep inelastic scattering (DIS) events contain-
ing an isolated forward jet [4,5] is a better discrimina-
tor of the underlying small x dynamics. The process is
sketched in Fig. 1a. In this case we effectively study DIS
off known parton distributions and so we avoid the ambi-
guity in the choice of the input distributions. The method
is theoretically attractive. The summation of the leading
ln(1/x) contributions gives an (x/xj)−λ behaviour of the
BFKL ladder connecting the photon to parton a. Here x is
Bjorken x and xj is the fraction of the proton’s longitudi-
nal momentum carried by the parton jet. An unambiguous
measurement of the exponent λ looks feasible. In practice
a major problem is the identification of the jet due to par-
ton a, and the measurement of its momentum, when it is
close to the remnants of the proton. Typically the clean
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observation of the jet requires xj
<∼ 0.1 and so in this pro-

cess we lose about a factor of 10 in the ‘small x reach’ of
HERA.

Besides the x−λ growth as x decreases along the BFKL
ladder, a second characteristic feature is the diffusion in
ln k2

T where kT are the transverse momenta of the gluons
emitted along the chain. One way the diffusion manifests
itself is in an enhancement of the transverse energy (ET )
flow in the central region between the current jet and the
proton remnants [6], see Fig. 1b. In principle the diffusion
can enhance ET from both the ‘upper’ and ‘lower’ BFKL
gluon ladders, which are denoted by Φ and f in Fig. 1b.
However, the x reach at HERA is insufficient to fully de-
velop the ln k2

T diffusion in both ladders simultaneously.
Nevertheless, the effect is quite appreciable giving at the
parton level an energy flow ET

<∼ 2 GeV/unit of rapidity.
However the clean parton level prediction can in practice
be masked or mimicked by the effects of hadronization.
Thus, although the prediction for ET is in agreement with
observations [7] we cannot definitely conclude that it is
due to ln(1/x) resummations.

An interesting way to overcome this ambiguity is to
consider the emission of single particles at relatively large
transverse momentum pT in the central region [8]. The
single particle spectrum at sufficiently large values of pT

should be much more immune from hadronization and
more directly reflect the ln k2

T diffusion from the BFKL
ladders.

The outline of the contents of the paper is as follows.
In Sect. 2 we use the data for the process DIS + forward
jet to normalise the BFKL function Φ shown in Fig. 1a.
To be precise we numerically solve the BFKL equation
for Φ using the amplitude Φ(0) for the quark box (and
crossed box) as input at a value z0 of z = x/xj which is
chosen so that the resulting Φ reproduces the DIS + jet
data. Also, for completeness, we present in Sect. 2, an ana-
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Fig. 1. Diagrammatic representation of a the
deep inelastic + forward jet, b the ET flow, and
c the single particle spectrum measurement

lytic form for Φ which is valid for fixed αS , and which has
been the basis for a recent analysis. In Sect. 3 we give the
formula necessary to calculate the transverse momentum
(pT ) spectrum of single particles produced in the central
region. The process is shown in Fig. 1c. The predictions
for the pT spectra (with and without the BFKL effects in-
cluded) are compared with HERA data. Finally in Sect. 4
we give our conclusions.

2 DIS + forward jet events

We first calculate the cross section for DIS containing a
forward identified jet. This so-called “Mueller” process is
a valuable probe of small x dynamics in its own right.
We compare with HERA data to normalise the function
Φ shown in Fig. 1a. There are uncertainties in the nor-
malisation, and even the shape of the x distribution is
dependent on subleading ln(1/x) corrections.

The variables of the process are shown in Fig. 2. As
usual the variables x and y are given by x = Q2/2p ·q and
y = p · q/pe ·p where p, pe and q denote the four momenta
of the proton, the incident electron and the virtual photon
respectively, and Q2 ≡ −q2. The variables xj and kjT are
the longitudinal momentum fraction and transverse mo-
mentum carried by the forward jet. The differential cross
section is given by [4]

∂σj

∂x∂Q2 =
∫

dxj

∫
dk2

jT

4πα2

xQ4

×
[
(1 − y)

∂F2

∂xj∂k2
jT

+
1
2
y2 ∂FT

∂xj∂k2
jT

]
(1)

where the differential structure functions have the follow-
ing form

∂2Fi

∂xj∂k2
jT

=
3αS(k2

jT )
πk2

jT

∑
a

fa

(
xj , k

2
jT

)

×Φi

(
x

xj
, k2

jT , Q2
)

(2)

xj, kjT

kjT

xj
a

x, κ
Q2

Fig. 2. Diagrammatic representation of a deep inelastic + for-
ward jet event

for i = T, L and F2 = FT + FL. We have assumed strong
ordering at the parton a - gluon vertex. Assuming also
t-channel pole dominance the sum over the parton distri-
butions is given by

∑
a

fa = g +
4
9

∑
q

(q + q̄) . (3)

Recall that these parton distributions are to be evaluated
at (xj , k

2
jT ) and that xj is taken as large as is experi-

mentally feasible. The data that we describe below have
xj > 0.035. For these values of xj the partons are reli-
ably determined from the global analyses, so there are no
ambiguities arising from a non-perturbative input.

The functions Φi(x/xj , k
2
jT , Q2) describe the virtual γ

+ virtual gluon fusion process including the ladder formed
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from the gluon chain of Fig. 2. They can be obtained by
solving the BFKL equations

Φi(z, k2
T , Q2) = Φ

(0)
i (z, k2

T , Q2) + αS

∫ 1

z

dz′

z′

∫
d2q

πq2

× [Φi(z′, (q + kT )2, Q2))

−Φi(z′, k2
T , Q2)Θ(k2

T − q2)
]

(4)

where αS ≡ 3αS/π. The inhomogeneous or driving terms
Φ

(0)
i correspond to the sum of the quark box and crossed-

box contributions. For small z we have

Φ
(0)
i (z, k2

T , Q2) ≈ Φ
(0)
i (z = 0, k2

T , Q2) ≡ Φ
(0)
i (k2

T , Q2). (5)

We evaluate the Φ
(0)
i by expanding the four momentum

in terms of the basic light-like four momenta p and q′ ≡
q + xp. For example, the quark momentum κ in the box
(see Fig. 2) has the Sudakov decomposition

κ = αp − βq′ + κT .

We carry out the integration over the box diagrams, sub-
ject to the quark mass-shell constraints, and find

Φ
(0)
T (k2

T , Q2)

= 2
∑

q

e2
q

αS

4π2

Q2

k2
T

∫ 1

0
dβ

∫
d2κT

×
{[

β2 + (1 − β)2
](κ2

T

D2
1

− κT .(κT − kT )
D1D2

)

+m2
q

(
1

D2
1

− 1
D1D2

)}

Φ
(0)
L (k2

T , Q2)

= 2
∑

q

e2
q

αS

π2

Q4

k2
T

∫ 1

0
dβ

∫
d2κT β2(1 − β)2

×
(

1
D2

1
− 1

D1D2

)
. (6)

where the denominators Di are of the form

D1 = κ2
T + β(1 − β)Q2 + m2

q

D2 = (κT − kT )2 + β(1 − β)Q2 + m2
q . (7)

The light u, d and s quarks are taken to be massless (mq =
0) and the charm quark to have mass mc = 1.4 GeV.

2.1 Analytic form of Φ for fixed αS

We solve the BFKL equation for Φ numerically, which al-
lows the use of running αS and the inclusion of a charm
quark mass. However, it is informative to recall the ana-
lytic solution which can be obtained if αS is fixed and we
assume that the quarks are massless. The first step is to

rewrite the driving terms (6) for mq = 0 in the form

Φ
(0)
T (k2

T , Q2) =
∑

q

e2
q

αS

4π
Q2
∫ 1

0
dλ

∫ 1

0
dβ

× [β2 + (1 − β)2][λ2 + (1 − λ)2]
[λ(1 − λ)k2

T + β(1 − β)Q2]
(8)

Φ
(0)
L (k2

T , Q2) =
∑

q

e2
q

2αS

π
Q2
∫ 1

0
dλ

∫ 1

0
dβ

× λ(1 − λ)β(1 − β)
[λ(1 − λ)k2

T + β(1 − β)Q2]
(9)

where λ is the Feynman parameter which appears in the
representation

1
D1D2

=
∫ 1

0
dλ

1
[λD1 + (1 − λ)D2]2

. (10)

We see that, for fixed αS and mq = 0, the Φ
(0)
i are func-

tions of a single dimensionless variable r = Q2/k2
T . We

may therefore represent the driving terms Φ
(0)
i (Q2/k2

T ) in
terms of their Mellin transforms Φ̃

(0)
i (γ)

Φ
(0)
i (r) =

1
2πi

∫ 1
2+i∞

1
2 −i∞

dγΦ̃
(0)
i (γ)rγ (11)

where i = L, T and r ≡ Q2/k2
T . The Mellin transform is

useful since it diagonalizes the BFKL equation (4). The
solutions for fixed coupling αS may therefore be written

Φi(z, k2
T , Q2) =

1
2πi

∫ 1
2+i∞

1
2 −i∞

dγ

(
Q2

k2
T

)γ

× exp(αSK(γ) ln
1
z
)Φ̃(0)

i (γ) (12)

where αS ≡ 3αS/π and K(γ) is the Mellin transform of
the kernel of the BFKL equation

K(γ) = 2Ψ(1) − Ψ(γ) − Ψ(1 − γ) (13)

with Ψ(γ) ≡ Γ ′(γ)/Γ (γ). The functions Φ̃
(0)
i (γ) are ob-

tained by inserting (8) and (9) into the inverse relation to
(11). We find

Φ̃
(0)
T (γ) =

∑
q

e2
q

αS

4π

∫ ∞

0
drr−γ

∫ 1

0
dλ

∫ 1

0
dβ

× [β2 + (1 − β)2][λ2 + (1 − λ)2]
[λ(1 − λ) + β(1 − β)r]

(14)

=
∑

q

e2
q

αS

sinπγ
B(γ + 2, γ)B(3 − γ, 1 − γ)

Φ̃
(0)
L (γ) =

∑
q

e2
q

2αS

π

∫ ∞

0
drr−γ

∫ 1

0
dλ

∫ 1

0
dβ

× λ(1 − λ)β(1 − β)
[λ(1 − λ) + β(1 − β)r]

(15)

=
∑

q

e2
q

2αS

sinπγ
B(−γ + 2,−γ + 2)B(γ + 1, γ + 1)
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where B(x, y) ≡ Γ (x)Γ (y)/Γ (x+y). The derivation of the
analytic formula relies on αS being fixed. This approach
has been used by Bartels et al. [9] to estimate the DIS
+ forward jet cross section taking the coupling αS(k2

T ) in
formulae (12). The prediction has the general shape of the
H1 data as a function of x, but the calculated cross section
exceeds the data by some 20% [10].

In the z → 0 limit the formulae reduce to the conven-
tional z−λ BFKL behaviour

Φi(z, k2
T , Q2) ∼ z−αSK( 1

2 )
(

Q2

k2
T

) 1
2

× Φ̃
(0)
i (γ = 1

2 )

(αSK ′′( 1
2 ) ln 1/z)

1
2

(16)

where for simplicity we have omitted the Gaussian diffu-
sion factor in ln(k2

T /Q2). If we evaluate the various func-
tions at γ = 1

2 we obtain

ΦT (z, k2
T , Q2) =

9π2

512
2
∑

e2
qα

1
2
S√

21ζ(3)/2

(
Q2

k2
T

) 1
2

× z−λ√
ln(1/z)

[
1 + O

(
1

ln(1/z)

)]

ΦL(z, k2
T , Q2) =

2
9
ΦT (z, k2

T , Q2) (17)

where λ = αSK( 1
2 ) = αS4 ln 2.

2.2 Normalisation of Φ and the description
of DIS + jet data

Our calculation of the DIS + forward jet process dif-
fers from that of [9] in that we numerically solve the
BFKL equations. Therefore, we are able to explicitly in-
clude the mc 6= 0 charm contribution. We also allow the
coupling αS to run. To be precise we solve the BFKL
equation (4) rewritten in terms of the modified function
αS(k2

T )Φi(z, k2
T , Q2) following the prescription that was

used in [5]. This choice of scale for αS is consistent with
the double logarithm limit and with the NLO ln(1/x) anal-
ysis of [11]. Formally by allowing the coupling to run we
introduce effects which go beyond the LO ln(1/x) approx-
imation. However they constitute only part of the NLO
ln(1/x) contribution and the remaining next-to-leading
terms may still affect the solution of the (modified) BFKL
equation.

We determine the functions Φi for z < z0 by solving
the BFKL equation as described in [5] starting from the
boundary condition

Φi(z0, k
2
T , Q2) = Φ

(0)
i (z0, k

2
T , Q2) ≈ Φ

(0)
i (k2

T , Q2) (18)

where Φ
(0)
i (k2

T , Q2) are the contributions of the quark box
(and crossed box) given in (6). We take u, d, s to be mass-
less and the charm quark to have mass mc = 1.4GeV
in the summation over the quarks. We then use (1) in-
tegrated over x and Q2 and (2) to calculate the DIS +
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Fig. 3. The deep inelastic + forward jet cross section in pb
integrated over bins of size 5 × 10−4 in x compared to the
H1 data presented at the Warsaw conference [10]. As in the
H1 measurement the forward jet was required to fulfil 7◦ <
θj < 20◦, Ej > 28.7 GeV, and kjT > 3.5 GeV. The electron
acceptance region is limited by 160◦ < θ′

e < 173◦, E′
e > 11

GeV, and y > 0.1 in the HERA frame

forward jet rate corresponding to the cuts used in the H1
measurement. That is the forward jet is constrained to the
region

7◦ < θj < 20◦, Ej > 28.7GeV, kjT > 3.5GeV,

whereas the outgoing electron must lie in the domain

160◦ < θ′
e < 173◦, E′

e > 11GeV, y > 0.1

in the HERA frame. Finally H1 require 1
2Q2 < k2

jT < 2Q2.
The BFKL calculation is compared with the data [10] in
bins of size ∆x = 5 × 10−4 in Fig. 3. We take the cut-off
on the dq2 integration in (4) to be q2 > k2

0 = 1GeV2.
The parameter z0 is then adjusted to give a satisfactory
normalization of the calculation. We find that the H1 data
require z0 ' 0.15. The predicted shape of the distribution
is in good agreement with the data. The sensitivity of the
calculated cross section to different choices of k2

0 and z0 is
shown for two different x bins in Fig. 4. We see that the
calculated values are relatively insensitive to the choice of
k2
0 and that z0 = 0.15 is preferred to z0 = 0.1.

We note that the DIS + forward jet measurement is,
in principle, a very clear test of possible BFKL resumma-
tion effects and that recent data from the H1 collaboration
at HERA confirm the importance of such ln(1/x) effects.
Theoretical analyses of this process [9,12] have shown that
the data cannot be described by fixed-order QCD which
underestimates the experimental results and gives a cross-
section which rises significantly less steeply with decreas-
ing x than the measured values. The BFKL resummation
effects are clearly needed.
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Fig. 4. The dependence of the DIS + jet cross section calcu-
lated from the BFKL equation (4) to the cut-off k2

0 on the dq2

integration and to the starting value z0 at which the bound-
ary conditions are specified. The dashed and continuous curves
correspond to z0 = 0.15 and 0.1 respectively. MRS(R2) par-
tons [15] are used. The H1 measurements [13] in the two x bins
are plotted at k2

0 = 1GeV2

3 Single particle pT spectra

We first use Fig. 1c to obtain the differential cross section
for the production of a hadron of transverse momentum
pT and longitudinal momentum fraction xh. Then we cal-
culate the charged particle spectra relevant to the recent
observations at HERA [13].

3.1 The cross section for charged particle production

The cross-section for single particle production is obtained
by convoluting the inclusive cross-section for the produc-
tion of a single parton with the parton fragmentation func-
tion. The differential cross section for the inclusive produc-
tion of a single parton of longitudinal momentum fraction
xj and transverse momentum kjT has the generic form of
(1). We have

∂σj

∂xj∂k2
jT ∂x∂Q2

=
4πα2

xQ4

[
(1 − y)

∂F2

∂xj∂k2
jT

+
1
2
y2 ∂FT

∂xj∂k2
jT

]
. (19)

xh, pT

D
kγ

kp

xj, kj

x
Q2

Fig. 5. Diagrammatic representation of the cross section for
emission of a high transverse momentum pT particle

Now for small x, and in the central region away from
the current jet and the proton remnants, we expect glu-
onic partons to dominate where the gluons are radiated
within the BFKL ladder. The differential structure func-
tions occurring in (19) are then given by

xj
∂Fi

∂xj∂k2
j

=
∫

d2kp

πk4
p

∫
d2kγ

k2
γ

[
αS(k2

j )k2
pk2

γ

k2
j

]
(20)

×f(xj , k
2
p)Φi

(
x

xj
, k2

γ , Q2
)

δ2(kj − kp − kγ)

with i = T, L and where for simplicity we have omitted the
subscript T from the gluon transverse momenta, kjT , kpT

and kγT , see Fig. 5. The functions Φi are those of Sect. 2
which control the DIS + forward jet rate, while f is the
unintegrated gluon distribution which satisfies the BFKL
equation

−z
∂f(z, k2)

∂z
= αS

∫
d2q

πq2

[
k2

(q + k)2
f(z, (q + k)2)

− f(z, k2)Θ(k2 − q2)
]

. (21)

The expression in square brackets in (20) arises from the
(square of the) BFKL vertex for real gluon emission, see
Fig. 5.

In practice we evolve (21) down in z from the boundary
condition

f(z0, k
2) = fAP (z0, k

2) =
∂
[
z0g

AP (z0, k
2)
]

∂ ln(k2/k2
0)

(22)
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where here z = z0 with1 z0 = 10−2, and where gAP is the
conventional gluon distribution obtained from a global set
of partons. As before we allow the coupling to run, that is
we take αS(k2) in (21). Moreover, we impose an infrared
cut-off k2

0 = 1GeV2. That is we require the arguments of
f to satisfy k2 > k2

0 and (k + q)2 > k2
0. Similarly, the

integrations in (20) are restricted to the regions k2
p, k2

γ >

k2
0. We may include the contribution ∆Fi from the region

k2
p < k2

0 by assuming the strong ordering approximation,
k2

p � k2
γ ∼ k2

j , at the gluon vertex. This contribution to
(20) then becomes

xj
∂(∆Fi)
∂xj∂k2

j

= αS(k2
j )
∫ k2

0 dk2
p

k2
p

f(xj , k
2
p)Φi

(
x

xj
, k2

j , Q2
)

= αS(k2
j )

xjg(xj , k
2
0)

k2
j

Φi

(
x

xj
, k2

j , Q2
)

. (23)

Most of the time, however, for the calculation relevant to
the HERA data, the variable xj is not small enough for
the BFKL equation to be applicable for the function f .
In these cases, that is when xj > z0, we therefore again
assume strong ordering k2

p � k2
γ ∼ k2

j . In addition we
include the contributions from quark and antiquark jets.
We then obtain

xj
∂F2

∂xj∂k2
j

= αS(k2
j )

xj

[
g + 4

9

∑
q (q + q̄)

]
k2

j

×Φi

(
x

xj
, k2

j , Q2
)

, (24)

where the parton distributions are to be evaluated2 at
(xj , k

2
j ). The differential cross section for single particle

(h) production is obtained by convoluting the jet cross
section with the fragmentation functions D for the parton
→ h transition

∂σh

∂xh∂p2
T ∂x∂Q2 =

∫ 1

xh

dz

∫
dxj

∫
dk2

j δ(xh − zxj)

×δ(pT − zkj)

{
∂σg

∂xj∂k2
j ∂x∂Q2 Dh

g (z, µ2)

+
4
9

∑
q

[
∂σq

∂xj∂k2
j ∂x∂Q2 Dh

q (z, µ2)

+
∂σq

∂xj∂k2
j ∂x∂Q2 Dh

q (z, µ2)

]}
(25)

where σg, σq and σq̄ are the contributions to the cross sec-
tion σj for gluon, quark and antiquark jets respectively.

1 The choice of z0 = 0.01 marks the boundary below which
BFKL effects may not be neglected. It was used in the early
small x analyses [6,14] and is supported by a recent unified
BFKL/DGLAP study [2] of F2 data

2 For these values of xj , xj > 0.01, the partons are reliably
determined from the global analyses of deep inelastic and re-
lated hard scattering data

The fragmentation scale µ2 is of the order of k2
j . The cross

section for charged particle production is obtained by sum-
ming over all possible charged hadrons h.

3.2 Predictions for the single particle pT spectra

The data for the single (charged) particle pT spectra are
presented in the form (dn/dpT )/N where n is the mul-
tiplicity and N the total number of charged particles in
a given x, Q2 bin [13]. To calculate this pT spectrum we
evaluate

1
N

dn

dpT
=

(∑
h

∂σh

∂pT ∂x∂Q2

)/
∂σtot

∂x∂Q2 . (26)

where ∂σh/∂pT ∂x∂Q2 is obtained from (25) by integrat-
ing over xh. We take the central values of x, Q2 in the bin.
The integration limits are fixed by the limits on the pseu-
dorapidity interval under consideration. To be precise we
use

xh =
√

x

Q2 pT e−η (27)

where η is the pseudorapidity of the charged particle,
η = − ln tan(θ/2) with θ the angle with respect to the
virtual photon direction. Finally we calculate the total dif-
ferential cross section ∂σtot/∂x∂Q2 in (26) from the struc-
ture functions F2 and FL given by the MRS(R2) [15] set
of parton distributions.

Our aim is to make an absolute BFKL-based predic-
tion to compare with the pT spectra observed by the H1
collaboration. There is, however, an inherent uncertainty
in the normalisation due to the imposition of an infrared
cut-off on the BFKL transverse momentum integrations
(or due to other possible treatments of the non-pertur-
bative region). To overcome this problem we follow the
procedure described in Sect. 2.2 and fix the parameters
occurring in the calculation of the BFKL functions Φi by
requiring the prediction for the DIS + jet cross section
to give the correct normalization of the H1 forward jet
measurements. The next step is to use the functions Φi

obtained in this way in the computation of the differential
structure functions from (20), (23) and (24). In this way
we are able to calculate a normalized pT spectrum from
(26).

The BFKL prediction for the single particle spectra
may be compared with the result which would be obtained
if the BFKL gluon radiation is neglected. That is in (20),
(23) and (24) we replace the functions Φi which describe
the solution of the BFKL equation with the boundary
condition given by the quark box Φ

(0)
i only. In addition

we now also assume strong ordering for xj < z0 and carry
out the k2

p integration in (20). This amounts to assuming
that in a fixed-order treatment the dominant subprocess is
γg → qqg. In our calculation the κ integration is infrared
finite since we allow for the virtuality of the incoming and
exchanged gluons.

So we are now in the position to give a BFKL predic-
tion for the single particle spectra which can be compared
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Fig. 6. The transverse momentum spectrum of charged parti-
cles (π+, π−, K+, K−) in the pseudorapidity interval 0.5 < η <
1.5 in the virtual photon-proton centre-of-mass frame. The re-
sults are shown for kinematic bin 1 with the central values
x = 1.6 × 10−4 and Q2 = 7 GeV2. The continuous and the
dashed curves show the spectra obtained with Φi and f calcu-
lated from the BFKL equation. They only differ in the choice
of fragmentation scale: for the continuous curve the fragmen-
tation functions were evaluated at scale µ2 = (2kj)2 and for
the dashed curve at scale µ2 = k2

j . When BFKL radiation is
neglected in the calculation of the pT spectra, i.e. when the
quark box approximation Φi = Φ

(0)
i is used and strong order-

ing at the gluon vertex is assumed, then the dash-dotted and
dotted curves are obtained. The fragmentation functions were
evaluated at scales 2kj and kj respectively. The data points
shown are from the H1 measurement of the charged particle
spectra [13]
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Fig. 7. As Fig. 5, but for kinematic bin 2, x = 2.9 × 10−4 and
Q2 = 9 GeV2
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Fig. 8. As Fig. 5, but for kinematic bin 3, x = 3.7 × 10−4 and
Q2 = 13 GeV2

with the H1 data. In their measurement the H1 collabora-
tion collected data in nine different kinematic bins in two
pseudorapidity intervals. We will focus on the three small-
est x bins where BFKL effects should become visible. Also
we will only show results for the lower pseudorapidity in-
terval, 0.5 < η < 1.5, where we expect no contamination
due to the fragmentation of the current jet which has not
been included in the calculation. In the computation of
the pT spectra we use

Ee = 27.5GeV, Ep = 820GeV
and impose the cuts which where used in the H1 measure-
ment, i.e. we require the outgoing electron to lie in the
region

157◦ < θ′
e < 173◦, E′

e > 12GeV, y > 0.05

in the HERA frame. Also we subtract 10% off the total
cross section σtot to account for diffractive events with
large rapidity gaps which have been excluded from the
measurement. Finally, in the sum over the charged
hadrons h in (26) we include π± and K±, and we use
the next-to-leading order fragmentation functions by Bin-
newies et al. [16]. In Fig. 6 we show predictions for the
charged particle pT spectrum in kinematic bin 1 of the H1
analysis with central values x = 1.6 × 10−4 and Q2 = 7
GeV2. We compare the results when BFKL small x resum-
mation is included in the calculation with the case when
gluon radiation is neglected. In both cases we demon-
strate the effect of changing the fragmentation scale from
µ2 = k2

j to µ2 = (2kj)2. We see that the BFKL predic-
tion gives a good description of both the shape and the
normalization3 of the H1 data. On the other hand, when

3 Even though we have normalised Φ to the DIS + jet data,
there still remains some residual uncertainty in the overall nor-
malisation associated with the choice of infrared cut-off used
in the kγ integration in (20). Our results are shown for the
natural choice k2

γ0 = 1 GeV2
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Fig. 9. The description of a DIS + forward jet data and b the charged particle transverse momentum spectrum obtained using
four different choices of input. The GRV and MRS(R2) partons are taken from [17] and [15] respectively
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Fig. 10. The charged particle transverse momentum spectrum
in kinematic bin 3 obtained using two different sets of fragmen-
tation functions. Set 1, which was used for the previous figures,
is taken from [16], and set 2 is from [18]. Set 2 is available for
various choices of Λ(4),NLO. We show the spectrum calculated
using the parametrisations corresponding to Λ(4),NLO = 200
MeV and 350 MeV. In all three case the fragmentation func-
tions were evaluated at scale µ2 = (2kj)2. Note that set 2 de-
scribes the fragmentation of all charged hadrons whereas from
set 1 we only included pions and kaons and neglected the very
small contribution due to protons

the BFKL effects are neglected the predictions lie consid-
erably below the data. Also we see, as expected, that the
spectrum decreases more rapidly with pT than when the
BFKL resummation is included. For example for pT = 1.5
GeV the two predictions differ by a factor 3.6, whereas for
pT = 6 GeV this factor is almost 10. This is a reflection
of the diffusion in ln k2

T along the BFKL ladder.
The same general behaviour is seen in Figs. 7 and 8

where we show the comparison for kinematic bins 2 and
3, with central values x = 2.9 × 10−4, Q2 = 9 GeV2 and
x = 3.7 × 10−4, Q2 = 13 GeV2, respectively. We find that
in all three small x bins of the H1 analysis the data support
the inclusion of BFKL resummation in the calculation of
the pT spectra. Reasonable variations of the fragmentation
scale do not allow for a description of the data when BFKL
effects are neglected. In Fig. 9 we illustrate the sensitivity
of the calculated cross sections to the choice of parton
distributions and of the cut-off k2

0 and the starting point
z0 of the BFKL evolution. For a given set of partons and a
given choice of k2

0 the value of z0 should be chosen to give
an optimal description of the DIS + jet data, Fig. 9a. This
was done for MRS(R2) partons with k2

0 = 1GeV2, but not
for the other three choices shown so as to better display
the typical variations. Even so we see that the combined
description of both data sets (Figs. 9a and b) is rather
stable to reasonable variations of the input choices.

We now investigate the sensitivity of the predictions to
the choice of fragmentation functions. The charged parti-
cle transverse momentum spectra shown in Figs. 6–9 where
calculated using the fragmentation functions given in [16]
which we will refer to as set 1. Recently Binnewies [18]
obtained a new set (“set 2”) which for our analysis has
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the advantage that the gluon fragmentation function is
better constrained than in set 1. This improvement was
achieved by using data for the longitudinally polarized
cross section together with the now available NLO longi-
tudinal coefficient functions. In contrast to set 1, where
the authors distinguished between pions and kaons, set 2
describes the fragmentation of all charged hadrons. Also
unlike set 1, where Λ(5),NLO was a free parameter in the
fit, for set 2 different fixed values of Λ(4),NLO were used,
leading to different subsets of fragmentation functions. Of
these Λ(4),NLO = 350 MeV which corresponds to Λ(5),NLO

= 229 MeV is closest to the value which was obtained for
set 1, namely Λ(5),NLO = 227 MeV. In Fig. 10 we show a
comparison of the charged particle spectrum in kinematic
bin 3 calculated using the two sets of fragmentation func-
tions evaluated at scale µ2 = (2kj)2. Displayed as a solid
line is the spectrum obtained from set 1 including pions
and kaons and neglecting protons. The dashed and dotted
curves correspond to the spectrum for all charged hadrons
calculated from set 2 for the choices Λ(4),NLO = 200 MeV
and 350 MeV respectively. We find that using set 2 leads
to an increase of the spectrum which is mainly due to the
new gluon fragmentation function, see Fig. 21 in [18]. We
see that the uncertainty due to fragmentation, although
not negligible, is considerably less than the difference be-
tween the curves calculated using the BFKL equation and
the ones in which the BFKL radiation is neglected shown
in Figs. 7–9.

4 Conclusion

We studied the DIS + forward jet process including mas-
sive charm in the quark box and solving the BFKL equa-
tion numerically for running coupling. We found that
BFKL dynamics describe the shape of the x distribution
of the HERA data well. Next we used these data to fix
the normalization of the solution of the BFKL equation
with the boundary condition given by the quark box. This
enabled us to give an absolute prediction for charged par-
ticle transverse momentum spectra at small x. We calcu-
lated the spectrum for large values of pT first including
BFKL small x resummation in the calculation and second
neglecting gluon radiation. It turned out that the BFKL
prediction agrees well with the H1 data both in shape and
normalization, whereas the approximate fixed order result
underestimates the data and decreases too rapidly with
pT . We may therefore conclude that the data are indica-
tive of the existence of ln(1/x) effects and for the diffu-
sion in ln k2

T which accompanies BFKL evolution. Despite
these encouraging results it would, however, still be use-
ful to compare the BFKL prediction for the pT spectrum
with the result of the complete fixed order calculation4.
Experimental data for higher values of pT would allow

4 The approximate fixed order result, in which we neglect
BFKL evolution, is based on the subprocess γ∗g → qqg with
the charged particle pT spectra coming from the outgoing gluon
jet. At this order this is expected to be the dominant contribu-
tion. Indeed since the fixed order calculation failed to explain

an even clearer distinction between the different predic-
tions. BFKL effects would also become more apparent in
the pseudorapidity interval −0.5 < η < 0.5 which corre-
sponds to higher values of xj and therefore to a longer
BFKL evolution starting from the quark box. Of course
higher xj also means less BFKL evolution from the proton
end. This is, however, not a disadvantage, since already
for the pseudorapidity interval which we considered the
main contribution to the spectrum comes from the region
xj > z0. We conclude that although more experimental
data especially for higher values of pT would be useful,
the existing spectra are compatible with the presence of
BFKL effects at small x at HERA.
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